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THE ROLE OF THE FIRST AND SECOND MODES IN 

COMPRESSIBLE BOUNDARY-LAYER TRANSITION 

V. I. Lysenko UDC 532.526 

At present there is no complete theory that can predict the transition location in a 
compressible boundary layer. In practice, however, the well-developed approximate methods 
based, as a rule, on linear stability theory are used (see, e.g., [i]). In the absence of 
information on the initial disturbance spectrum in the boundary layer (e.g., in flight 
tests) it is possible to use the (crude) en-method to locate transition. This method has 
been effective at subsonic speeds in "wind-tunnel" as well as flight tests including three- 
dimensional boundary layers (see, e.g., [2]). In this method the transition location is 
fixed when the disturbance amplitude ratio A = Q/Q0 attains the value e n (Q0 is the distur- 
bance amplitude at the lower branch of the neutral stability curve, Q is the current value 
of the amplitude, and n is specified) which is the amplification ratio in the unstable region. 
The transition Reynolds number determined in such a manner is an integral characteristic 
of the boundary-layer instability. It can be used to lucidly compare the contrfbutions 
made by the first and the second modes to the growth of unstable disturbances in the boundary 
layer and investigate the influence of various factors on both the modes~ A comparison 
of stability characteristics (growth rate, neutral curves, and transition Reynolds number) 
of the first and the second disturbance modes is the primary objective of the present paper. 

i. The basis for this study is the program to compute disturbance amplification rate 
~i in the boundary layer with heat transfer [3]. A detailed description of the computational 
technique to determine the stability characteristics is given in [i, 4]. 

Consider a compressible, heat conducting, two-dimensional boundary layer (see, e.g., 
[5] for the system of equations). Computationals are carried out for air flow on an im- 
permeable surface with a specified wall temperature. Almost all computations are carried 
out for zero pressure gradient flow past a cone. The only exception was the study of the 
influence of pressure gradient on the amplification ratio. 

The system of equations describing the flow in the boundary layer was transformed to a 
system of ordinary differential equations (for the flow with a pressure gradient local 
similarity was assumed [5]) which was then numerically integrated (see [i] for details). 
Numerical integration was used to determine the streamwise velocity and temperature distri- 
butions, their derivatives and the variation of viscosity across the boundary layer. These 
were required for the solution of the stability equations. In order to determine the 
amplification ratio the Dunn-Lin [6] approximation was used for the system of stability equa- 
tions with boundary conditions: streamwise and normal velocity as well as temperature 
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fluctuations at the wall are zero and are damped at infinity. 

The solution to the Dunn-Lin system of equations with the given boundary conditions is 
described in [i]. New variables are introduced and the Dunn-Lin system of equations (in par- 
tial derivatives) is transformed to a system of six, first order, ordinary differential 
equations. It is numerically integrated using orthogonalization technique. The following 
assumptions were made in these computations: Prandtl number Pr = 0.72, ratio of specific 
heats ~ = 1.41, Sutherland viscosity law ~ = cT3/2/(T + T s) (c is a constant, T s = II0.4~ 

Numerical results from integration were used to obtain information on three-dimensional 
disturbances in the form of relations ~i = ~(Re, F, X), where F = u/Re (~ is the circular 
frequency), X is the angle at which the disturbances are propagated (inclination of the wave 
angle to the streamwise direction), Re is the Reynolds number. The Reynolds number for the 
flow past a cone is given by Re = s 3, where u is the streamwise velocity, ~ is the 
kinematic viscosity, s is the coordinate along the body surface, and the index e denotes 
quantities at the outer edge of the boundary layer. It was assumed that m is real and 
~i/~i = Br/gr [7], where ~ = ~r + i~i is the wave number in the streamwise direction, and 
B = Br + i$i is the wave number in the lateral direction. Then X = arctg(~r/~r)- 

The disturbance amplification rate is related to the disturbance amplitude Q by the 
"Re 

equation Real(d in Q/ds) = _~dimen.1 Hence it follows that for a cone ]nlQ/Q01=--6, ~dRe 

(~i is the nondimensional amplification rate). This expression determines the ratio of the 
disturbance amplitude at points with coordinates Re and Re 0 and gives the amplification ratio 
for the disturbance in the given segment. 

Unlike the case of subsonic speeds (where the most unstable disturbances are two- 
dimensional), it is necessary to consider ~i = ~i(Re, F, X)(X is the wave propagation angle) 

when M > i. Here the maximum-~ i at M = 1.5-7 are obtained in the range X % 50-70~ for the 
first mode (for the second mode the two-dimensional disturbances are more unstable). In 
the present work computations are carried out for the critical angle X* which is determined 

Re 

as that angle at which the integral --6~ e~dRe most rapidly reached the specified value n 
0 

(n = 9), i.e., when X = X* the Reynolds number determined at A = e n is a minimum (it is 
tentatively assumed to be the transition Reynolds number Retr); Retr being an integral 
quantity (taking into consideration amplification rates as well as the neutral curve) of the 
boundary-layer instability, it is considered a fundamental parameter for the comparison of 
the stability characteristics fo the first (low frequency) and the second (high frequency) 
disturbance modes. In the case of uniformly distributed disturbance energy spectrum in 
the boundary layer, the transition location is determined by the mode for which Retr is less. 

It is known that the first disturbance mode is completely analogous to the well-known 
Tollmien-Schlichting wave from hydrodynamic stability theory. For example, with wall 
cooling in air flow, the mean velocity, temperature, and density profiles are altered such 
that the flow becomes more stable relative to the first mode. 

The second mode represents another form of acoustic resonance in a shear flow. This 
type of instability was discovered in [8, 9]. The effect of a number of factors on the 
amplification ratio of the second mode is discussed in [i0]. It was explained that the 
oblique waves of this type (X # 0) are more stable than two-dimensional disturbances (• = 0) 
and surface cooling has a weak destabilizing effect. However, an integral characteristic 
such as Retr was not determined for the second mode. 

2. Stability characteristics have been computed for M = 1-7 ~ , stagnation temperature 
T o = 210-1000~ and temperature ratio T w = 0.5-1.0, and amplification factor at a small 

= = Ue~epgr~ds, p is the velocity (pressure) gradient 8 (2N/ue)due/d~ O; 0.01; and 0.i 7= , 2 
0 

density, rw(S) is the equation of the body contour). 

Results of some computations are shown in Figs. 1-5. The variation in Retr for the first 
(curve i) and the second (curve 2) modes at M = 1-7 is shown in Fig. i for an insulated 
cone (T w = i, B = 0). The static temperature for all Mach numbers is the same 
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(T e =--50~ A comparison of computed data with flight tests and wind-tunnel tests (flight tests on 
F-15 (cone, Tw = i) [ii] and ballistic tests [12] (cone, Twis a variable) is shown in Fig. i; dashed 
line corresponds to Re I = (u/v)~ = 28 • 106 M-1,dashed-dotted line is for Re• = ii • 106 M -!, 
On the whole (and especially when M = 1-4) the computed and actual (obtained in real situa- 
tion) Retr agree very well which indicates that en-method (n % 9) gives a good estimate of 
transition location. Experiments and computations show that for the first mode there are 
local maxima (when M % 2) and minima (when M % 3.5-4) depending on Retr = Retr(M) at T w = 1 
and ~ = 0 whereas for the second mode under the same conditions there is only a single minimum 
(when M % 6.5-7). With an increase in Mach number (starting from M % 7) Retr increases for 
the first as well as the second modes. And approximately when M > 7 for uniformly distributed 
energy spectrum, the location of transition will be determined not by the first but by the 
second mode. 

It is also necessary to emphasize that the behavior of an integral quantity such as 
Retr cannot always be judged on the basis of individual dependences (on Mach number in the 
present case) of the critical Reynolds number Retr (minimum Reynolds number at which dis- 
turbances start to grow at any particular frequency) and maximum amplification factors. In 
particular, with a reduction in M in the range M = 1-4, Retr as well as (--~i)max increase 
continuously whereas the relation Retr = Retr(M) has a maximum at M % 2 (which agrees ex- 
cellently with flight tests [ii]). On the other hand, maximum amplification factors for the 
second mode become larger than those of the first mode when M > 4, and for the integral 
characteristics Retr this occurs when M > 7. For the second m~de the maximum of the 
dependence of (-~i)max on M takes place at M % 5, and the minimum of the dependence Retr(M) 
occurs in the range M = 6.5-7. All these indicate the need for estimating the transition 
location based particularly on the integral characteristics of Retr. 

The variation of Retr for the first (curve I) and the second (curve 2) modes is shown 
in Fig. 2 as a function of the temperature ratio (T w = 0.5-1.0) at M = 4, and T o = 937~ (T w 
is the ratio of the wall temperature to the stagnation temperature). It is seen that even 
for T w ~ 0.7 in uniformly distributed disturbance spectrum, the transition location is 
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determined not by the first mode but by the second mode; it plays the decisive role for 
T w < 0.55 for practically any given spectrum. The nature of these variations shown in Figs. 1 
and 2 is confirmed by experiments [13] conducted at M = 8 and T w = 0.93 and 0.48, where it is 
shown that the transition Reynolds number caused by the second mode decreases with a decrease 
in T w. 

Figure 3 demonstrates the effect of pressure gradient on the amplification rate ~i of the 
first (a) and the second (b) modes at M = 4 and Re = 780 (F is the nondimensional frequency). 
Significant stabilizing influence of negative pressure gradient is observed, especially for 
the second mode. Since the influence of $ on the second mode is more significant than on the 
first mode, ~i at ~ = 0 and 0.i (lines 1 and 2) are shown in Fig.3a and at ~ = 0 and 0.01 (lines 
1 and 2) in Fig. 3b. 

The influence of stagnation temperature T o on the stability characteristics (amplifica- 
tion rate, neutral stability curve, and conditional transition Reynolds number) is shown in 
Figs. 3-5 (T w = I): solid lines indicate T o = 300~ dashed lines indicate 600~ dashed - 
dotted lines denote 900~ In Fig. 5, line 1 is for the first mode and the line 2 is for the 
second mode. Figures 3-5 show that an increase in T o leads to the stabilization of the first 
mode (a reduction in --~imax and an increase in Recr and Retr ; in Fig. 4 (M = 1.5) neutral 
curves are limited at the lower end by the frequency at which A = e 9, and the extreme right 
point of the curve corresponds to Retr). The effect of stagnation temperature on the 
stability characteristics increases with Mach number. The data obtained agree well with 
results [i0, 14] for the influence of T o on ~i and Recr for the first mode. An increase 
in T o also has a stabilizing influence on the second mode at M = 4 (Fig. 3b and 5), which is 
even stronger than that on the first mode. 

The author acknowledges his thanks to A. A. Maslov for his help in this work. 
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